public class TopNMRRMetric extends ListOnlyTopNMetric<TopNMRRMetric.Context>
Compute the mean reciprocal rank.
This metric is registered with the type name mrr. It has two configuration parameters:
suffixgoodItems| Modifier and Type | Class and Description |
|---|---|
static class |
TopNMRRMetric.AggregateResult |
static class |
TopNMRRMetric.Context |
static class |
TopNMRRMetric.UserResult |
| Constructor and Description |
|---|
TopNMRRMetric()
Construct a new MRR metric using the user’s test items as good.
|
TopNMRRMetric(ItemSelector goodItems,
java.lang.String sfx)
Construct a new recall and precision top n metric
|
TopNMRRMetric(PRMetricSpec spec)
Construct an MRR metric from a spec.
|
| Modifier and Type | Method and Description |
|---|---|
TopNMRRMetric.Context |
createContext(AlgorithmInstance algorithm,
DataSet dataSet,
RecommenderEngine engine)
Create the context for an experimental condition (algorithm/data set pair).
|
MetricResult |
getAggregateMeasurements(TopNMRRMetric.Context context)
Get the aggregate results from an accumulator.
|
MetricResult |
measureUser(Recommender rec,
TestUser user,
int targetLength,
LongList recommendations,
TopNMRRMetric.Context context)
Measurement method that only uses the recommend list.
|
measureUsergetAggregateColumnLabels, getColumnLabels, getRequiredRootspublic TopNMRRMetric()
Construct a new MRR metric using the user’s test items as good.
public TopNMRRMetric(PRMetricSpec spec)
Construct an MRR metric from a spec.
spec - The metric speclpublic TopNMRRMetric(ItemSelector goodItems, java.lang.String sfx)
Construct a new recall and precision top n metric
goodItems - The list of items to consider “true positives”, all other items will be treated as “false positives”.sfx - A suffix to append to the metric.@Nullable public TopNMRRMetric.Context createContext(AlgorithmInstance algorithm, DataSet dataSet, RecommenderEngine engine)
MetricCreate the context for an experimental condition (algorithm/data set pair). The default implementation returns null.
Note: Contexts must be thread-safe, in that multiple concurrent calls to the appropriate user-measurement function with the same context must be safe. This can be handled either by the context itself, or by the user-measurement function.
createContext in class Metric<TopNMRRMetric.Context>algorithm - The algorithm.dataSet - The data set.engine - The LensKit recommender engine, if applicable. This can be null for an external algorithm that does not provide a LensKit recommender.null.@Nonnull public MetricResult getAggregateMeasurements(TopNMRRMetric.Context context)
MetricGet the aggregate results from an accumulator. The default implementation returns MetricResult.empty().
getAggregateMeasurements in class Metric<TopNMRRMetric.Context>context - The context for an experimental condition.@Nonnull public MetricResult measureUser(Recommender rec, TestUser user, int targetLength, LongList recommendations, TopNMRRMetric.Context context)
ListOnlyTopNMetricMeasurement method that only uses the recommend list.
Thread Safety: This method may be called concurrently by multiple threads with the same recommender and context.
measureUser in class ListOnlyTopNMetric<TopNMRRMetric.Context>rec - The recommender used to recommend for this user.user - The user.targetLength - The target list length.recommendations - The list of recommendations.context - The context.