public interface EvalTask
Interface for evaluation tasks. Each evaluation task performs some task with the trained model and measures the results. Performing a task on a recommender trained over a particular data set results is called a measurement.
TrainTestExperiment
Modifier and Type | Method and Description |
---|---|
ConditionEvaluator |
createConditionEvaluator(AlgorithmInstance algorithm,
DataSet dataSet,
RecommenderEngine rec)
Set up a measurement of a single recommender.
|
void |
finish()
Finalize this eval task.
|
java.util.List<java.lang.String> |
getGlobalColumns()
Get columns that will go in the aggregate output file.
|
java.util.Set<java.lang.Class<?>> |
getRequiredRoots()
Get the root types required by this evaluation.
|
java.util.List<java.lang.String> |
getUserColumns()
Get columns that will go in the per-user output file.
|
void |
start(ExperimentOutputLayout outputLayout)
Do initial setup for this eval task.
|
java.util.List<java.lang.String> getGlobalColumns()
Get columns that will go in the aggregate output file.
java.util.List<java.lang.String> getUserColumns()
Get columns that will go in the per-user output file.
java.util.Set<java.lang.Class<?>> getRequiredRoots()
Get the root types required by this evaluation.
void start(ExperimentOutputLayout outputLayout)
Do initial setup for this eval task. This should create any per-task output files, etc.
outputLayout
- The output layout for experiment results.void finish()
Finalize this eval task. This should finish writing and close any per-task output files, etc.
ConditionEvaluator createConditionEvaluator(AlgorithmInstance algorithm, DataSet dataSet, RecommenderEngine rec)
Set up a measurement of a single recommender.
algorithm
- The algorithm being evaluated.dataSet
- The data set being evaluated.rec
- The recommender engine that will be measured.