public class MutualInformationVectorSimilarity extends Object implements VectorSimilarity, Serializable
| Constructor and Description |
|---|
MutualInformationVectorSimilarity(Quantizer quantizer)
Construct a new mutual information similarity.
|
| Modifier and Type | Method and Description |
|---|---|
boolean |
isSparse()
Query whether this similarity function is sparse (returns 0 for vectors with
disjoint key sets).
|
boolean |
isSymmetric()
Query whether this similarity function is symmetric.
|
double |
similarity(SparseVector vec1,
SparseVector vec2)
Compute similarity using mutual information.
|
@Inject public MutualInformationVectorSimilarity(Quantizer quantizer)
quantizer - A quantizer to allow discrete mutual information to be computed.public double similarity(SparseVector vec1, SparseVector vec2)
Note, this similarity function measures the absolute correlation between two vectors. Because of this it ranges from [0,inf), not [-1,1] as specified by superclass. Caution should be used when using this vector similarity function that your implementation will accept values in this range.
similarity in interface VectorSimilarityvec1 - The first vector.vec2 - The second vector.VectorSimilarity.similarity(SparseVector, SparseVector)public boolean isSparse()
VectorSimilarityisSparse in interface VectorSimilaritytrue iff VectorSimilarity.similarity(SparseVector, SparseVector) will always return
true when applied to two vectors with no keys in common.public boolean isSymmetric()
VectorSimilarityisSymmetric in interface VectorSimilaritytrue if the function is symmetric.